КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ АЛЬ-ФАРАБИ

Физико-технический факультет

Кафедра теоретической и ядерной физики

Согласовано			у тверждено				
			На	заседани	и Науч	но-ме	тодического
Декан	факультета		Cor	вета униве	ерситета	a	
		_Давлетов А.Е.	Про	отокол №	~<	>>>	2016 г.
"		2016 г.	Пер	рвый Про	ректор		
						_Ахме	д-Заки Д.Ж.
			11	"		2016	Γ.

«Механизм ядерных реакций с учетом процессов кластеризации»

(наименование дисциплины)

Специальность «6D060500-Ядерная физика»

(шифр, название)

Форма обучения дневная, 1 курс, 2 семестр (дневная, заочная)

УМК дисциплины составлен <u>Жаугашева С.А., доцент, к.ф.-м.н.,</u> (Ф.И.О., должность, ученая степень и звание составителя(ей))

<u>60500-Ядерная физ</u>	основании каких документов)
(на С	эсновании каких документов)
Рассмотрен и рекол	мендован на заседании кафедры
Tucomorpen ii pekoi	лендовин ни зисединин кифедры
OT //\	2016 F. HOOTOVOL NO
01	2010 1., IIpotokoji N2
Зав кафепрой	Абишер М Е
Зав. кафедрой	2016 г., протокол № Абишев М.Е.
Зав. кафедрой(р	оспись)
Зав. кафедрой(р	Абишев М.Е. роспись)
Зав. кафедрой(р	оспись)
Зав. кафедрой(р	Абишев М.Е.
Зав. кафедрой(р	оспись)
Зав. кафедрой(р	Абишев М.Е. роспись)
Зав. кафедрой(р	оспись)
(p	оспись)
екомендовано мет	одическим Советом (бюро) факультета
(p	одическим Советом (бюро) факультета
екомендовано мет	одическим Советом (бюро) факультета

КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им. аль-Фараби ФИЗИКО-ТЕХНИЧЕСКИЙ ФАКУЛЬТЕТ

Образовательная программа по специальности «6D060500-Ядерная физика»

			Утвержде
на заседании У	⁷ ченого	совета	
			факульт
Протокол №	от «	»	2010
Декан факультета		,	<i>Давлетов А</i>

СИЛЛАБУС*

основному элективному модулю 1 «Механизм ядерных реакций с учетом процессов кластеризации» <u>3</u> кредита 1 курс, р/о

СВЕДЕНИЯ о преподавателе:

Жаугашева Сауле Аманбаевна, к.ф.-м.н., доцент:

e-mail: Zhaugasheva.Saule.kaznu.kz

каб.: 204

ПАСПОРТ модуля:

Цель преподавания курса является пояснить, каким образом математический наблюдаемые формализм помогает ПОНЯТЬ Согласно современной точке зрения, основными структурными единицами материи являются кварки и лептоны, взаимодействующие с обменом квантами полей Янга - Миллса (если не учитывать гравитацию). Это значит, взаимодействия полностью определяется ИЛИ иного что вид того алгебраической структурой соответствующей группы внутренней симметрии. взаимодействия сильные описываются хромодинамикой - калибровочной теорией, базирующейся на группе SU(3). С электрослабыми взаимодействиями, которые описываются выне стандартной моделью Вайнберга - Салама, связана группа SU(3) x U(1),

Задачи курса после изучения курса докторант должен хорошо представлять современную картину микромира- мира ядер, внутриядерных процессов, мира элементарных частиц.

При освоении курса «**Механизм ядерных реакции с учетом процессов кластеризации»** докторантам необходимо знать:

- структуру и свойства ядер, ядерные силы, закон сохранение энергии при ядерных взаимодействиях и.т.д.
- •**Пререквизиты, постреквизиты**. Ядерная физика, Физика атомного ядра и элементарных частиц, Введение в физику атомного ядра.
- **7. Пререквизиты:** физика и математика в объеме общих курсов, высшая математика.
- **8. Постреквизиты:** квантовая механика, общий курс ядерной физики, физика ядерных реакций.
- 9. Краткое содержание курса: В последнее время калибровочным полям уделяется большое внимание. Объясняется это тем, что в рамках квантовой теории калибровочных полей удалось достигнуть существенного прогресса в решении ряда важных проблем теории поля и физики элементарных частиц. Задачи изучения дисциплины сводятся к следующему: В результате изучение курса магистранты должны иметь представление: о законах симметрии и сохранение при взаимодействиях элементарных частиц; о классификации элементарных частиц; SU(2), SU(3), о мультиплетах, о новых квантовых числах: изоспине, странности, гиперзаряде, чарме, ботонном и топпоном и др. В ходе курса рассматриваются калибровочные поля, промежуточные мезоны, нарушение симметрии, механизм Хиггса, угол Вайнберга, константы электрослабых частиц и структура пространства времени.

СТРУКТУРА, ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

No	Задания	Форма	Методические	Рекомендуема
		проведения	рекомендации	я литература
1	Экзотические	Индивидуальна	По Интернету и по	Журналы
	ядра. Свойство	я письменная	обзорной	
	и основные	работа (ИПР)	публикации	
	характеристики			
2	Переход к	Индивидуальна	Изучать журналы и	Книги по Few
	систему центр	я письменная	статьи	–Body systems
	масс для	работа (ИПР)		
	трехтельной			
	системы			
3	О форме	Дискуссия	Спиновый и	Бор
	потенциала		изиспиновый	Мотельсон
	нуклон –		инвариантности	
	нуклонное			
	взаимодействия			
4	Вычисление	Индивидуальна	Использования	Учебник по
	энергетического	я письменная	квантово	квант -
	спектра для	работа (ИПР)	механические	механики

	T		T	
	потенциала		знания для двух	
	параболическог		тельной системы	
	о конфаймента			
5	Нейтрон	Дискуссия	Экспериментальны	Журналы и
	избыточного		е результаты	статьи
	ядра			
6	Вычисление	Индивидуальна	Использования	Книги по Few
	энергетического	я письменная	адиабатические	-Body systems
	спектра	работа (ИПР)	приближения	
	трехтельной			
	системы			
7	Вычисление	Дискуссия	Экспериментальны	Учебник по
	магнитного	-	е и теоретические	ядерной
	момента		результаты	физике
	протона и			_
	нейтрона			
8	О Е1 переходы	Индивидуальна	Использования	Учебник по
	и волновые	я письменная	учебников по квант	ядерной
	функции ядра	работа (ИПР)	-механики	физике
9	Дипольные и	Индивидуальна	Отклонение от	Учебник по
	октупольные	я письменная	сферической	ядерной
	моменты ядра	работа (ИПР)	симметрии	физике
1	Потенциал Вуд-	Индивидуальна	Использования	Учебник по
0	Саксона и	я письменная	квантово	ядерной
	энергетический	работа (ИПР)	механические	физике
	спектр ядра		знания	(Бор
				Мотельсон)

10. Литература

Основная литература:

- 1. С. Газирович, "Физика элементарных частиц", перевод с английского, М., Наука, 1969 г., 741 стр.
- 2. Н.П. Коноплева, В.Н. Попов, "Калибровочные поля", М. атомиздат, 1980 г.
- 3. Л.Б. Окунь "Физика элементарных частиц", М. Наука, 1988 г.
- 4. Ф. Клоуз "Кварки и протоны: введение в теорию", М., Мир, 1982 г.

Дополнительная литература:

1. М. Динейхан, Н. Қойшыбаев, Элементар бөлшектер, КазНУ, Алматы, 2002 ж. -192 б.

- **2.** Флюгге 3. Задачи по квантовой механике. М.: Мир, 1978.-643 с.
- **3.** В. Де Альфаро, С. Фубини, Г. Фурлан, К. Росетти "Токи в физике адронов", изд. Мир, 1976г.
- **12. Формы рубежного контроля и экзамена.** Контрольные работы, устный экзамен, письменный экзамен (по выбору магистранта).
- **13. Политика выставления оценок.** Рубежный контроль I 30%, (7 неделя); Рубежный контроль II 30%, (14 неделя); Экзамен 40 %.

Политика курса. Обязательное посещение занятий и активность на практических занятиях, активность на СРМП. Шкала оценок:

A - 95-100% - отлично;

A - 90-94% - отлично;

В –75-89% - хорошо;

C - 60-74% - удовлетворительно;

D- 50-59% - удовлетворительно;

F - 0-49% - неудовлетворительно.

Экзаменационная оценка по дисциплине определяется из итогового показателя из успеваемости в соответствии со следующей таблицей:

A	95-100%	Отлично
A-	90-94%	
B+	85-89%	
В	80-84%	Хорошо
В-	75-79%	
C+	70-74%	
С	65-69%	
C-	60-64%	Удовлетворительно
D+	55-59%	
D	50-54%	
F	0-49%	Неудовлетворительно

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

ТИПОВАЯ УЧЕБНАЯ ПРОГРАММА

Механизмы ядерных реакций с учетом процессов кластеризации (код и наименование дисциплины)

«6D060500-Ядерная физика»

(код и наименование специальности)

Объем 3 кредита

ПРЕДИСЛОВИЕ

1 РАЗРАБОТАНА И ВНЕСЕНА КазНУ им. аль-Фараби
Авторы:
Жаугашева С.А., к.фм.н., доцент кафедры теоретической и ядерной
физики физико-технического факультета КазНУ им.аль-Фараби
2 РЕЦЕНЗЕНТЫ Дуйсебаев Альнур Дуйсебаевич, д.фм.н., профессор кафедры теоретической и ядерной физики физико-технического факультета КазНУ им.аль-Фараби;

3 УТВЕРЖДЕНА И ВВЕДЕНА В ДЕИСТВИЕ	2 приказом
Министерства образования и науки Республики Казахстан	
от «»2016 года №	
	
4 Типовая учебная программа разработана в соответствии с	
государственным общеобязательным стандартом образования спо	епиальности
«6D060500-Ядерная физика»	сциальности
(наименование специальности)	
(наименование специальности)	
5 РАССМОТРЕНА на заседании Республиканског	го Учебно-
методического совета от «»2016 года Протокол	. №

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рассмотрен физический механизм ядерных реакций при низких энергиях, обусловленный пространственной протяженностью электрона. В случае атомного ядра используют различные модели, которые называют механизмами реакции. Существует множество различных механизмов. Изучение реакций, в которых передается дейтрон, тритон и частица, может, кроме всего, прояснить ситуацию с ассоциированием в ядрах. Она рассчитана на подготовку специалистов физико-технического профиля специализаций «6D060500-Ядерная физика».

Перечень дисциплин, усвоение которых необходимо для изучения данного курса (пререквизиты дисциплины):

Для изучения данной дисциплины необходимо знание курсов:

Метод функции Грина, Квантовая механика, Квантовая теория поля

ТЕМАТИЧЕСКИЙ ПЛАН ДИСЦИПЛИНЫ

№	Название тем
1	Введение
2	Общие понятия
3	Вычисление энергетического спектра для потенциала параболического
	конфаймента
4	Нейтрон избыточного ядра
5	Вычисление энергетического спектра трехтельной системы
6	Вычисление магнитного момента протона и нейтрона
7	О Е1 переходы и волновые функции ядра
8	Дипольные и октупольные моменты ядра
9	Потенциал Вуд-Саксона и энергетический спектр ядра

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Введение

Целью данного курса является изучение физический механизма ядерных реакций при низких энергиях, обусловленный пространственной протяженностью электрона. В случае атомного ядра используют различные модели, которые называют *механизмами реакции*. Существует множество различных механизмов. Изучение реакций, в которых передается дейтрон, тритон и частица, может, кроме всего, прояснить ситуацию с ассоциированием в ядрах.

Задачи. Врезультатеизучения дисциплины докторанты овладеют следующими компетенциями:

- знать механизмы ядерных реакций;
- освоить метод реакции передачи с легкими кластерными ядрами;
- *-иметь* четкие понятия об объектах, к которым применима теория неабелевых калибровочных полей.
- уметь производить вычисления в физике адронов.

Роль данной области науки огромна и ее место находится на переднем крае фундаментальных исследований. Колоборации всего мира участвуют в грандиозных научно-исследовательских проектах по общей эгидой ЦЕРНа результаты, которых и дают почву для дальнейших размышлений и открытий в этой области науки.

Краткий исторический очерк науки дисциплины. Начиная с 1896 года с экспериментов Рентгена и фундаментальных экспериментов по рассеянию альфа-частиц естественного природного радиоактивного источника на тонкой золотой фольге, поставленных Эрнестом Резерфордом и его планетарной модели атома, предложенной в 1911 году было сделано много открытий по уточнению и дополнению новыми теориями, как самого атома так и его структуры ядра. За этот небольшой по времени период знания о атоме, а особенно о его ядре претерпели много изменений. К настоящему моменту наука располагает многочисленными моделями структуры ядра, но все они не описывают в полном понимании его структуру, а лишь только некотором приближении.

Основная часть

Безмодельные ядерные параметры

Энергия связи ядра. Избыток массы. Основной и возбужденные состояния ядра

Состав ядер.

Нуклонный состав. Альфа-кластерная материя. Мультикластерная структура ядр ядра. Кварковые ассоциации.

Внутриядерные силы взаимодействия

Сильное взаимодействие. Электромагнитное взаимодействие. Роль слабых сил. Истинно ядерной взаимодействие: кварки и глюоны. Кварк-глюонная плазма. Античастицы. Спин, четность, изоспин. Зарядовая независимость ядерных сил. Центральный и обменный характер. Короткодействие и явление насыщения. Спиновая зависимость ядерных сил.

Ядерные модели

Размеры и форма ядер. Класс одночастичных моделей. Спин-орбитальное взаимодействие. Ядерные оболочки. Многочастичная модель оболочек. Сверхтекучая модель. Связь синьорити. Модели коллективного типа. Поверхностные колебания. Вращение деформированного ядра. Колебания объема ядра с последующим делением. Гигантские мультипольные резонансы. Альфа-кластерная модель. Капельная и капельковая модели. Мультикластерная модель. Квазикристаллическая модель.

Ядерная спектроскопия

Периодическая система ядер. Возбужденное состояние одночастичного типа. Вращательные полосы. Вибрационные возбужденные состояния. Кластерное возбуждение ядер.

ПЕРЕЧЕНЬ ТЕМ ПРАКТИЧЕСКИХ (СЕМИНАРСКИХ) ЗАНЯТИЙ

- 1 Вычисление энергетического спектра для потенциала параболического конфаймента
- 2 Нейтрон избыточного ядра
- 3 Вычисление энергетического спектра трехтельной системы
- 4 Вычисление магнитного момента протона и нейтрона
- 5 О Е1 переходы и волновые функции ядра
- 6 Дипольные и октупольные моменты ядра
- 7 Потенциал Вуд-Саксона и энергетический спектр ядра

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

Основная литература:

- 5. С. Газирович, "Физика элементарных частиц", перевод с английского, М., Наука, 1969 г., 741 стр.
- 6. Н.П. Коноплева, В.Н. Попов, "Калибровочные поля", М. атомиздат, 1980 г.
- 7. Л.Б. Окунь "Физика элементарных частиц", М. Наука, 1988 г.
- 8. Ф. Клоуз "Кварки и протоны: введение в теорию", М., Мир, 1982 г.

Дополнительная литература:

- **1.** М. Динейхан, Н. Қойшыбаев, Элементар бөлшектер, КазНУ, Алматы, 2002 ж. 192 б.
- **4.** Флюгге 3. Задачи по квантовой механике. М.: Мир, 1978.-643 с.
- **5.** В. Де Альфаро, С. Фубини, Г. Фурлан, К. Росетти "Токи в физике адронов", изд. Мир, 1976г.